
Fuzzy Modeling and Identification
Toolbox

For Use with MATLAB

Robert Babuška

Fuzzy Modeling and Identification Toolbox User’s Guide (August 1998)
Copyright c
 1997-98 by Robert Babuška.

No part of this manual may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any informa
tion storage and retrieval system, without permission in writing from the author.

Disclaimer: This software is distributed without any warranty.

License agreement:

� You are allowed to use this software for non-commercial (academic) purpose
free of charge.

� You are not allowed to commercialize the software. If you want to use the
software for commercial projects, an additional agreement with the autho
must be made.

MATLAB and SIMULINK are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of thei
respective holders.

Toolbox version 2.0
This manual was printed on August 10, 1998 (first printing).

The development of this software was in part supported by the “FAMIMO” projec
(Fuzzy Algorithms for the Control of Multiple-Input, Multiple-Output Processes)
funded by the European Commission (Esprit LTR 21911). More information abou
this project is available at http://iridia.ulb.ac.be/FAMIMO/

Dr. Robert Babuška
Control Engineering Laboratory
Faculty of Information Technology and Systems
Delft University of Technology
Mekelweg 4, P.O. Box 5031, 2600 GA Delft
The Netherlands

Phone: +31 15 2785117 Fax: +31 15 2626738
E-mail: r.babuska@its.tudelft.nl
Web: http://lcewww.et.tudelft.nl/~babuska

Contents

Introduction 1

Fuzzy Modeling and Identification : 1

About the Toolbox : 2

Installation : 2

New Features in Version 2.0 : 3

Examples 5

Approximating a Static Function : 5

Modeling a SISO Dynamic System : : : : : : : : : : : : : : : : : : : 8

Modeling a MIMO Dynamic System : : : : : : : : : : : : : : : : : : 10

Reference 15

fmclust : 16

fmsim : 19

fmstruct : 21

fm2tex : 22

plotmfs : 23

rms : 24

vaf : 25

Literature 26

Fuzzy Modeling and Identification Toolbox i ii

Introduction

This section first gives a brief introduction to fuzzy modeling. Then the structure
of the toolbox and its installation are described.

Fuzzy Modeling and Identification

Since its introduction in 1965, fuzzy set theory has found applications in a wide
variety of disciplines. Modeling and control of dynamic systems belong to the fields
in which fuzzy set techniques have received considerable attention, not only from
the scientific community but also from industry. Many systems are not amenable
to conventional modeling approaches due to the lack of precise, formal knowledge
about the system, due to strongly nonlinear behavior, due to the high degree of
uncertainty, or due to the time varying characteristics. Fuzzy modeling along with
other related techniques such as neural networks have been recognized as powerful
tools which can facilitate the effective development of models.

Fuzzy models can be seen as logical models which use “if–then” rules to establish
qualitative relationships among the variables in the model. Fuzzy sets serve as
a smooth interface between the qualitative variables involved in the rules and the
numerical data at the inputs and outputs of the model. The rule-based nature of fuzzy
models allows the use of information expressed in the form of natural language
statements and consequently makes the models transparent to interpretation and
analysis. At the computational level, fuzzy models can be regarded as flexible
mathematical structures, similar to neural networks, that can approximate a large
class of complex nonlinear systems to a desired degree of accuracy.

Recently, a great deal of research activity has focused on the development of meth-
ods to build or update fuzzy models from numerical data. In order to automatically
generate fuzzy models from measurements, a comprehensive methodology is im-
plemented in this toolbox. It employs fuzzy clustering techniques to partition the
available data into subsets characterized by a linear behavior. From the obtained
fuzzy partitions a multivariable model of the Takagi–Sugeno type (Takagi and Su-
geno, 1985) is constructed. A detailed description of this identification method can
be found in (Babuška, 1998).

Fuzzy Modeling and Identification Toolbox 1

About the Toolbox

The Fuzzy Modeling and Identification (FMID) toolbox is a collection of MATLAB

functions for the construction of Takagi–Sugeno (TS) fuzzy models from data. The
toolbox provides five categories of tools:

� fmclust automatically generates a TS fuzzy model from given input–output
data. The parameters of the obtained models are stored in a single Matlab
structure. This allows the user to easily manipulate, store and document fuzzy
models.

� fmsim simulates an available fuzzy model either from the input or in a one-
step-ahead mode. This function also computes the variance accounted for
(VAF) performance index for the model.

� fm2tex exports the parameters stored in the fuzzy model structure into a
LATEXfile.

� fmidemo opens a menu with several demonstration of static and dynamic
fuzzy models. The individual demos can serve as templates for the user’s
own applications.

� In addition, the toolbox contains several utilities which are of little importance
to the user.

In addition to these tools developed specifically for fuzzy identification, a more
general Fuzzy Toolbox is available from the author. This toolbox was originally
developed for MATLAB 4 and is currently being converted to MATLAB 5. Eventually,
both toolboxes will be merged in one.

Installation

The installation is straightforward and it does not require any changes to your
system settings. Proceed along the following four steps:

1. Create a subdirectory under your\MATLAB\TOOLBOX directory, call
it whatever you like, for instance FMID. If you are updating an existing
installation of the toolbox, remove all its files first.

2

2. Copy the toolbox files to this directory. If the toolbox was provided as a zip
file, use pkunzip to unpack it in this directory. Use the ‘-d’ option in order to
extract also the PRIVATE subdirectory which contains some utility functions
used by the main toolbox routines.

3. Modify or create the MATLABstartup.mfile to include theFMID directory:

addpath c:\MATLAB\TOOLBOX\FMID

4. Start MATLAB and run fmidemo.

New Features in Version 2.0

The main differences with respect to the previous version (1.0) are:

� The synopsis for fmclust has been modified. Instead of passing a large
number of numerical parameters, the function is now called with three para-
meters which are structures. Each of them groups parameters related to a
certain aspect of the model (data, parameters, dynamics).

� The internal representation of the fuzzy model structureFM has been modified.
This implies that models generated with the previous version cannot be used
and have to be generated again from data.

� Function plotmfs has been added. This function plots the membership
functions.

� A bug has been fixed in fmsim.

Fuzzy Modeling and Identification Toolbox 3 4

Examples

In this section, several examples for the identification of static and dynamic systems
of varying complexity are given. For additional examples, see fmidemo.

Approximating a Static Function

This example is implemented in statdemo. Let us approximate a univariate static
function by a TS fuzzy model. First, prepare the structure containing the input and
output data:

u = (0:0.02:1)’;
y = sin(7*u);
Dat.U = u;
Dat.Y = y;

Second, choose the number of clusters (5), and the type of the antecedent (projected
membership functions). For the remaining parameters, default values will be used.

Par.c = 5;
Par.ante = 2;

Now we can call the function fmclust which automatically constructs the fuzzy
model and returns it in the structure FM:

[FM,Mu] = fmclust(Dat,Par);

The output of the model can be computed for the any input data by:

[ym,VAF] = fmsim(u,y,FM);

In this case, the same input was used as was used for identification. Usually, a
different data set is used for model validation (see the following example). A plot is
displayed on the screen and the output of the model is returned in ym. The second
output argument, VAF, is the variance accounted for performance index (see vaf).
Figure 1 shows the plot produced by the fmsim command.

In addition to the output and the VAF index, the degree of fulfillment and the outputs
of the individual rules can be obtained from fmsim:

[ym,VAF,dof,yl,ylm] = fmsim(u,y,FM);

Fuzzy Modeling and Identification Toolbox 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input

O
ut

pu
t

Original function (blue) and fuzzy model (magenta)

Figure 1. Static function (solid line) and its approximation by a fuzzy
model (dashed-dotted line). The fit of the model is VAF=99.67%.

6

dof contains the degrees of fulfillment of the rules, yl are outputs of the indi-
vidual rules. ylm is equal to ym with the exception that all outputs but the one
corresponding to the largest dof are masked by NaN. This facilitates easy plotting
of the local models. In our static SISO example, the dof matrix represents the
membership functions evaluated for the input vector, see Fig. 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1
Original function (yellow) and local models

Input

O
ut

pu
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Membership functions

Input

M
em

be
rs

hi
p

gr
ad

e

Figure 2. The original function and the obtained local models (top),
membership functions (bottom).

Now you can investigate the contents of the FM structure. To display the consequent
parameters, for instance, type:

FM.th{1}

ans =
5.7961 0.0259
-0.0023 0.8993
-5.3350 2.3972
0.5580 -1.2872
6.1772 -5.5209

Fuzzy Modeling and Identification Toolbox 7

In a similar way, the cluster centers and other parameters can be extracted. The
function fm2tex writes the information from FM to a LATEXfile. A part of this file
is included below, in order to see the rules and the cluster centers:

1: If u is A1 then y = 5:80 � 100u+ 2:59 � 10�2

2: If u is A2 then y = �2:29 � 10�3u+ 8:99 � 10�1

3: If u is A3 then y = �5:33 � 100u+ 2:40 � 100

4: If u is A4 then y = 5:58 � 10�1u� 1:29 � 100

5: If u is A5 then y = 6:18 � 100u� 5:52 � 100

rule u

1 7:28 � 10�2

2 2:40 � 10�1

3 4:53 � 10�1

4 6:74 � 10�1

5 8:89 � 10�1

Modeling a SISO Dynamic System

In this example, we develop a simple dynamic model for the relationship between
the throttle angle and the speed of an engine. Let us first define thePar (parameters)
and Dyn (dynamics) structures:

Par.c = 3; % number of clusters
Par.m = 2.2; % fuzziness parameter
Par.tol = 0.01; % termination criterion
Par.ante = 1; % product-space MFs
Dyn.Ny = 1; % number of lagged outputs
Dyn.Nu = 1; % number of lagged inputs
Dyn.Nd = 1; % number of transport delays

Par.c defines the number of required clusters, Par.m, and Par.tol are the
fuzziness and the termination tolerance of the clustering algorithm, respectively.
The Par.ante parameter specifies that product-space membership functions will
be derived. Dyn.Ny and Dyn.Nu are the number of lags in the output and
input, respectively, and Dyn.Nd is the number of pure delays from the input
to the output. Thus, we will obtain a fuzzy model of the following structure:

y(k + 1) = f(y(k); u(k)). Now we load the data set, split it in halves and use the
first half for identification and the second half for validation.

8

load data
N = size(engine_speed,1);
N2 = floor(size(engine_speed,1)/2);
Dat.U = throttle(1:N2);
Dat.Y = engine_speed(1:N2);
Dat.Ts = 0.1;
ue = throttle(N2+1:N);
ye = engine_speed(N2+1:N);

Dat.Ts is the sample time of the data. Now, the model can be constructed and
validated by simulation:

FM = fmclust(Dat,Par,Dyn);
[ym,VAF] = fmsim(ue,ye,FM); VAF

The graphical output obtained from the fmsim function is shown in Fig. 3. Run
endemo1 to see this demo.

0 100 200 300 400 500 600
1000

1500

2000

2500

3000

3500

4000

4500

Time [s]

O
ut

pu
t1

Figure 3. Dynamic simulation of the engine (VAF=99.63%).

Fuzzy Modeling and Identification Toolbox 9

Modeling a MIMO Dynamic System

Consider a MIMO process consisting of four cascaded tanks as shown in Fig. 4.
The inputs are the two flow rates u = [Q1; Q2]

T , and the outputs are the four levels

y = [h1; h2; h3; h4]
T .

h3

h1

h4

Q1

h2

2

3

Q2

4

1

Figure 4. Four cascaded tanks.

A model of this system was simulated in Simulink in order to obtain input–output
data sequences for identification. The input signal is a low-pass filtered normally
distributed white noise to which white noise with a small amplitude is added, see
Fig. 5. The low-frequency component signal drives the nonlinear system through
the entire operating range, while the high-frequency component takes care for
persistent local excitation.

The measured outputs are the levels in the four tanks. They are similar to signals
given in Fig. 6. The number of samples available for identification is 1000 and the
sample time is 10 s. The structure of the MIMO model is selected by using the

10

0 2 4 6 8 10
 0

 5

10

u 1 [1
0−

3 l/s
]

0 2 4 6 8 10
 0

 5

10

Time [103 s]

u 2 [1
0−

3 l/
s]

Figure 5. Input data for identification.

Fuzzy Modeling and Identification Toolbox 11

insight in the physical structure of the system as follows:

ny =
2

6664
1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1
3

7775 ; nu =
2

6664
0 0

0 0

1 0

0 1
3

7775 ; nd =
2

6664
0 0

0 0

1 0

0 1
3

7775 : (1)

The first row of the ny matrix states that level h1(k + 1) depends on h1(k), h3(k)

and h4(k), but not on h2(k), see Fig. 4. Similarly, the third row of this matrix states
that h3(k+1) depends on h3(k), but not on the other variables. The meaning of nu

and nd should be clear.

To construct the fuzzy model, the identification data set is first loaded and the
structural parameters of the model are defined:

load ll4data % load input-output data
Dat.U = u; % input
Dat.Y = y; % output
Dat.Ts = 10; % sample time
Par.c = [3 3 3 3]; % number of clusters
Par.m = 2.2; % fuzziness parameter
Par.ante = 1; % product-space MFS
Dyn.Ny = [1 0 1 1; % output lags

0 1 1 1;
0 0 1 0;
0 0 0 1];

Dyn.Nu = [0 0; % input lags
0 0;
1 0;
0 1];

Dyn.Nd = [0 0; % transport delays
0 0;
1 0;
0 1];

Now the fuzzy model can be constructed and validated on a different data set (ue,
ye):

FM = fmclust(Dat,Par,Dyn);
[ym,VAF] = fmsim(ue,ye,FM);

The validation data set was obtained by interchanging the two input signals. A
comparison of the outputs of the fuzzy model with the process data is shown in
Fig. 6.

12

0 1 2 3 4 5 6 7 8 9 10
0

1

y 1 [m
]

0 1 2 3 4 5 6 7 8 9 10
0

1

y 2 [m
]

0 1 2 3 4 5 6 7 8 9 10
0

1

y 3 [m
]

0 1 2 3 4 5 6 7 8 9 10
0

1

Time [103 s]

y 4 [m
]

Figure 6. Comparison of the process output (solid line) with the fuzzy
model output (dashed-dotted line).

Fuzzy Modeling and Identification Toolbox 13

For a comparison, a 4th-order linear state-space model was identified from the same
data set by means of a subspace identification technique (Verhaegen and Dewilde,
1992). For the TS fuzzy model: VAF = [99:41; 99:46; 99:47; 99:81], and for the
linear state-space model: VAF = [95:37; 85:11; 96:88; 89:64]. It is clear that the
fuzzy model is considerably more accurate than the linear one.

14

Reference

Construction and simulation of fuzzy models
fmclust build a MIMO NARX fuzzy model by

product-space fuzzy clustering
fmsim simulate a MIMO NARX fuzzy model

Utilities
fmstruct description of the fuzzy model structure FM
fm2tex export a fuzzy model into a LaTEX file
plotmfs plot membership functions of a fuzzy model
rms root mean squared error
vaf variance accounted for

Demonstrations
endemo1 SISO model of throttle–speed relation
endemo2 MISO model of throttle–pressure relation
endemo3 SIMO model of throttle–(speed,pressure) relation
fmidemo list of all toolbox demos
lldemo1 SISO model of a liquid level process
ll4demo1 MIMO model of a process with four cascaded tanks
statdemo static SISO function (sine)
wwdemo SIMO model of waste-water treatment process

Fuzzy Modeling and Identification Toolbox 15

fmclust

Purpose
Build a MIMO input–output static or dynamic fuzzy model from data
by means of product-space fuzzy clustering (uses the Gustafson-Kessel
algorithm).

Synopsis
[FM,Mu,Z] = fmclust(Dat,Par,Dyn)

Description
The fmclust function constructs a multivariable TS fuzzy model
from input-output data. The data sequences and other data-related
information is given in the Dat structure which has the following fields:

Dat.U matrix containing input data
Dat.Y matrix containing output data
Dat.Ts sample time (optional, default 1)
Dat.N number of data points per batch

The data sequences are stored in the columns of Dat.U and Dat.Y.
In the sequel, the number of model inputs (columns of Dat.U) is de-
noted by ni and the number of model outputs (columns of Dat.Y) by
no. Dat.Ts is the sample period of the data. It is only stored in the
model structure FM and then used in simulation (fmsim) to get the right
time scale. This parameter is optional (default Ts = 1). With Dat.N,
one can specify that the input-output data consists of several separate
batches concatenated in the U and Y matrices. Dat.N is a vector con-
taining as many elements as there are batches. Each element then gives
the number of data samples in the corresponding batch. For instance,
N=[100 250 200] means that the U and Y matrices consist of three
batches, the first one of 100 samples, the second one of 250 samples,
and the third one of 200 samples.

User-supplied parameters related to clustering and model extraction are
are given in the Par structure which has the following fields:

Par.c number of clusters (thus also rules) per output
Par.m the fuzziness exponent per output (default 2)
Par.tol termination tolerance (default 0.01)

16

Par.seed seed for random generator (default sum(100*clock))
Par.ante type of the antecedent (default 1)

The number of required clusters is a scalar for MISO systems and a vec-
tor for MIMO systems (each MISO model may have a different number
of clusters). All the remaining fields of Par are optional. Par.m is the
fuzziness exponent (Par.m > 1) with the default value Par.m = 2.
Larger values imply fuzzier (more overlapping) clusters. For MISO sys-
tems, it is a scalar, for MIMO systems a vector, i.e., each MISO model
may have a different degree of fuzziness in clustering. The termina-
tion tolerance for the clustering algorithm can be given in Par.tol
(default Par.tol = 0.01). In fuzzy clustering, a random initial par-
tition is usually generated. In order to obtain reproducible results, the
random generator may be seeded by supplying the Par.seed para-
meter. Its default value is sum(100*clock)). Par.ante specifies
the type of the antecedent in the fuzzy model. Currently, two options
are implemented, 1 for product-space membership functions (default),
and 2 for projected membership functions. Product-space membership
functions give faster but often less accurate models. For MISO systems,
Par.FMtype is a scalar, for MIMO systems it is a 1� no vector (each
MISO model can be of a different type).

TheDyn structure defines the dynamics of the input–output model. This
structure is optional (if not supplied, a static MIMO model y = f(u) is
constructed) and has the following fields:

Dyn.Ny number of delays in y (default 0)
Dyn.Nu number of delays in u (default 1)
Dyn.Nd number of transport delays (default 0)

Dyn.Ny is the number of delays in y (analogical to the order of the
denominator polynomial of a linear transfer function). The default
value is Dyn.Ny=zeros(no,no), i.e., a static system. For MISO
systems, Dyn.Ny is a scalar (there is one output only), for MIMO
systems it is an no � no matrix. Each row corresponds to one MISO
model and specifies which delays of which outputs are included in that
model. Dyn.Nu defines the delays in u (analogical to the order of
the numerator polynomial of a linear transfer function). The default
value is Dyn.Nu=ones(no,ni) (static system). For MISO sys-
tems, Dyn.Nu is a 1 � ni vector, for MIMO systems it is an no �

ni matrix. Each row corresponds to one MISO model and specifies
which delays of which inputs are included in that model. Dyn.Nd

Fuzzy Modeling and Identification Toolbox 17

defines the number of pure transport delays in u. The default value is
Dyn.Nd=zeros(no,ni) (static system, thus no delay). For MISO
systems, Dyn.Nd is a 1 � ni vector, for MIMO systems it is an no

� ni matrix. Each row corresponds to one MISO model and specifies
which the transport delays in all the inputs of that model. To obtain a
causal model y(k + 1) = f(y(k); :::; u(k); :::), Dyn.Nd must be set to
one.

The output of fmclust is the FM structure which contains all the para-
meters of the obtained fuzzy model. See fmstruct for details. The
fuzzy partition matrices are returned in the Mu cell array, where each
cell corresponds to one output. Similarly, Z is a cell array containing
the data matrix that has been clustered. To visualize the partition, the
cells of Mu can be plotted against the columns of the cells in Z.

Algorithm
fmclust uses fuzzy clustering in the product space of the regressors
and the regressand in order to approximate a nonlinear system by a
collection of local linear models. Each local model then corresponds to
one fuzzy rule of the Takagi-Sugeno type. MIMO systems are identified
(and simulated) as a set of coupled MISO systems. See (Babuška, 1998)
for details.

Example
Approximate a sinusoidal function by a TS fuzzy model with five rules:

Dat.U = (0:0.02:1)’;
Dat.Y = sin(7*u);
Par.c = 5;
[FM,Mu] = fmclust(Dat,Par);
[ym,VAF] = fmsim(u,y,FM); VAF

See Also
fmsim, fmstruct, fm2tex

18

fmsim

Purpose
Simulate a MIMO input–output fuzzy model.

Synopsis
[Ym,q,DOF,Yl,Ylm] = FMSIM(U,Y,FM, ...

Ymin,Ymax,show,H)

Description
The fmsim function simulates a fuzzy model FM from the input data
U and compares the simulated output Ym with the true output Y. The
first several values of Y are used to initialize Ym. The number of these
values depends on the number of lags defined in Dyn. The Y parameter
is optional, if an empty matrix is supplied, zero initial conditions are
used. The format of data in U and Y is the same as in fmclust. Ymin
and Ymax are the lower and upper bounds on Y. During the simulation,
the outputs are constrained between these bounds. This parameter is
optional, default bounds are Ymin=-inf and Ymax=inf. The show
parameter determines what graphical output is shown on the screen. Set
this parameter to 1 for on-line plot during the simulation, to 2 for a plot
at the end of simulation, and to 0 for no plot at all (optional, default
1). The H parameter (optional) specifies the prediction horizon. In this
version, it only can be set to 1, which means one-step-ahead prediction.
If not supplied, simulation from input is used.

The output argument q is a performance index of the model, com-
puted as variance accounted for (VAF). See vaf for details. DOF is a
matrix containing the degrees of fulfillment of the rules. For multiple-
output systems, the individual models are concatenated in one matrix:
[DOF 1, DOF 2, ..., DOF no]. The contributions of the con-
sequents of the individual rules are returned in the matrix Yl. Ylm is
identical to Yl except for that all outputs but the one corresponding to
the largest DOF are masked by NaN. This format is suitable for plotting
the local models. The same holds for MIMO systems as with DOF.

Note: fmsim currently only works properly for static dynamic systems
with inputs, some minor adjustments are needed for autoregressive sys-

Fuzzy Modeling and Identification Toolbox 19

tems. The possibility to include a prediction horizon and a "single-step"
mode will be added as well.

See Also
fmstruct, fmclust, vaf

20

fmstruct

Purpose
Help on the structure of FM.

Synopsis
fmstruct or help fmstruct

Description
The parameters of a fuzzy model are stored in a MATLAB 5 structure
named FM (fuzzy model) which has the following fields:

Ts sample time
ni number of inputs
no number of outputs
N number of data samples used for identification
tol termination tolerance for clustering
seed seed for random initialization of fuzzy partition
date date of model construction
ny number of output lags
nu number of input lags
nd number of pure delays
ante type of fuzzy model
m fuzziness exponent
Alist list of indices of used antecedent variables
Clist list of indices of used consequent variables
rls rule matrix
mfs membership function matrix
th consequent parameters
s standard deviation for th
V cluster centers
P norm-inducing matrices
zmin minima of each column of the data matrix Z
zmax maxima of each column of the data matrix Z
InputName names of input variables (cell array)
OutputName names of output variables (cell array)

Each element of the FM array corresponds to one output of the model.

See Also
fmclust, fmsim, fm2tex

Fuzzy Modeling and Identification Toolbox 21

fm2tex

Purpose
Export a fuzzy model into a LaTEX file.

Synopsis
fm2tex(FM,filename)

Description
This utility function writes some of the information contained in FM
into a LaTEX file. The created file contains an introductory description
of the model and its structure. For each output, the rule base, the
consequent parameters and the cluster centers are included. FM is the
fuzzy model parameter matrix and filename specifies the name of
the LaTEX file to be created. If a file with the specified name already
exists, it is overwritten without a warning.

See Also
fmstruct, plotmfs

22

plotmfs

Purpose
Plot membership functions.

Synopsis
plotmfs(FM,opt)

Description
This utility plots the membership functions contained in FM on the
screen. Projected membership functions are plotted directly. Product-
space membership functions, however, cannot be visualized in general.
An approximate idea about their shape is obtained by plotting their
projections.

See Also
fmstruct, fm2tex

Fuzzy Modeling and Identification Toolbox 23

rms

Purpose
Root-mean-squared error between two signals.

Synopsis
rms(y1,y2)

Description
Function rms computes the root-mean-squared error between two sig-
nals. The RMS index is often used to assess the quality of a model, by
comparing the true output with the output of the model.

See Also
vaf

24

vaf

Purpose
Percentile variance accounted for (VAF) between two signals.

Synopsis
vaf(y1,y2)

Description
Function vaf computes the percentile variance accounted for (VAF)
between two signals as follows:

VAF = 100% �
"

1�

var(y1� y2)

var(y1)

#

The VAF of two equal signals is 100%. If the signals differ, VAF
is lower. When y1 and y2 are matrices, VAF is calculated for each
column. The VAF index is often used to assess the quality of a model,
by comparing the true output with the output of the model.

See Also
rms

Fuzzy Modeling and Identification Toolbox 25

Literature
Babuška, R. (1998). Fuzzy Modeling for Control. Kluwer Academic Publishers,

Boston.

Takagi, T. and M. Sugeno (1985). Fuzzy identification of systems and its ap-
plication to modeling and control. IEEE Trans. Systems, Man and Cybernet-
ics 15(1), 116–132.

Verhaegen, M. and P. Dewilde (1992). Subspace model identification. Part I:
the output-error state space model identification class of algorithms. Inter-
national Journal of Control 56, 1187–1210.

26

Notes

Fuzzy Modeling and Identification Toolbox 27 28

Fu
zz

y
M

od
el

in
g

an
d

Id
en

tifi
ca

tio
n

To
ol

bo
x

29

