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| ntroduction

This section first gives a brief introduction to fuzzy modeling. Then the structure
of the toolbox and itsinstallation are described.

Fuzzy Modeling and I dentification

Since its introduction in 1965, fuzzy set theory has found applications in a wide
variety of disciplines. Modeling and control of dynamic systemsbelongtothefields
in which fuzzy set techniques have received considerable attention, not only from
the scientific community but also from industry. Many systems are not amenable
to conventional modeling approaches due to the lack of precise, formal knowledge
about the system, due to strongly nonlinear behavior, due to the high degree of
uncertainty, or due to the time varying characteristics. Fuzzy modeling along with
other related techniques such as neural networks have been recognized as powerful
tools which can facilitate the effective development of models.

Fuzzy models can be seen as logical models which use “if-then” rules to establish
qualitative relationships among the variables in the model. Fuzzy sets serve as
a smooth interface between the qualitative variables involved in the rules and the
numerical dataat theinputsand outputsof themodel. Therule-based nature of fuzzy
models allows the use of information expressed in the form of natural language
statements and consequently makes the models transparent to interpretation and
anaysis. At the computational level, fuzzy models can be regarded as flexible
mathematical structures, similar to neural networks, that can approximate a large
class of complex nonlinear systemsto a desired degree of accuracy.

Recently, agreat deal of research activity has focused on the devel opment of meth-
odsto build or update fuzzy models from numerical data. In order to automatically
generate fuzzy models from measurements, a comprehensive methodology is im-
plemented in this toolbox. It employs fuzzy clustering techniques to partition the
available data into subsets characterized by alinear behavior. From the obtained
fuzzy partitions a multivariable model of the Takagi—Sugeno type (Takagi and Su-
geno, 1985) is constructed. A detailed description of thisidentification method can
be found in (Babuska, 1998).
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About the Toolbox

The Fuzzy Modeling and Identification (FMID) toolbox is a collection of MATLAB
functionsfor the construction of Takagi—Sugeno (TS) fuzzy modelsfrom data. The
toolbox provides five categories of tools:

e f ! ust automatically generatesaTSfuzzy model from giveninput—output
data. The parameters of the obtained models are stored in asingle Mat | ab
structure. Thisallowsthe user to easily manipulate, store and document fuzzy
models.

o f nBi msimulates an available fuzzy model either from the input or in aone-
step-ahead mode. This function also computes the variance accounted for
(VAF) performance index for the model.

o f M2t ex exports the parameters stored in the fuzzy model structure into a
IATEXfile.

e f i denp opens a menu with several demonstration of static and dynamic
fuzzy models. The individual demos can serve as templates for the user’s
own applications.

¢ Inaddition, thetoolbox containsseveral utilitieswhichareof littleimportance
to the user.

In addition to these tools developed specifically for fuzzy identification, a more
general Fuzzy Toolbox is available from the author. This toolbox was originally
developed for MATLAB 4 andiscurrently being converted to MATLAB 5. Eventually,
both toolboxeswill be merged in one.

Installation

The installation is straightforward and it does not require any changes to your
system settings. Proceed along the following four steps:

1. Create asubdirectory under your . . . . \ MATLAB\ TOOLBOX directory, call
it whatever you like, for instance FM D. If you are updating an existing
installation of the toolbox, remove all itsfilesfirst.



2. Copy the toolbox files to this directory. If the toolbox was provided as a zip
file, use pkunzip to unpack it in this directory. Usethe‘-d' optionin order to
extract also the PRIVATE subdirectory which contains some utility functions
used by the main toolbox routines.

3. Modify or createtheMATLAB st ar t up. mfiletoincludetheFM Ddirectory:

addpat h c:\ MATLAB\ TOOLBOX\ FM D

4. Start MATLAB and run f m deno.

New Featuresin Version 2.0

The main differences with respect to the previous version (1.0) are:

e The synopsis for f ntl ust has been modified. Instead of passing a large
number of numerical parameters, the function is now called with three para-
meters which are structures. Each of them groups parameters related to a
certain aspect of the model (data, parameters, dynamics).

e Theinternal representation of thefuzzy model structure FMhas been modified.
Thisimplies that models generated with the previous version cannot be used
and have to be generated again from data.

e Function pl ot nf s has been added. This function plots the membership
functions.

e A bug hasbeenfixedinf nsi m

Fuzzy Modeling and Identification Toolbox 3



Examples

Inthissection, severa examplesfor theidentification of static and dynamic systems
of varying complexity are given. For additional examples, seef i deno.

Approximating a Static Function

Thisexampleisimplementedinst at denp. Let usapproximateaunivariate static
function by a TS fuzzy model. First, prepare the structure containing the input and
output data:

u=1(0:0.02:1)";
y = sin(7*u);
Dat. U = u;
Dat.Y = vy;

Second, choose the number of clusters(5), and the type of the antecedent (projected
membership functions). For the remaining parameters, default values will be used.

Par.c
Par . ante

5;
2,

Now we can call the function f ntl ust which automatically constructs the fuzzy
model and returnsit in the structure FM

[FM Mu] = fnclust(Dat, Par);
The output of the model can be computed for the any input data by:
[ym VAF] = fmsin(u,y, FM;

In this case, the same input was used as was used for identification. Usually, a
different data set is used for model validation (seethefollowing example). A plotis
displayed on the screen and the output of the model is returned in ym The second
output argument, VAF, isthe variance accounted for performance index (seevaf ).
Figure 1 showsthe plot produced by the f nsi mcommand.

In addition to the output and the VAF index, the degree of fulfillment and the outputs
of the individual rules can be obtained from f nsi m

[ym VAF, dof ,yl ,yln] = frmsim(u,y, FM;
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Original function (blue) and fuzzy model (magenta)
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Figure 1. Static function (solid line) and its approximation by a fuzzy
model (dashed-dotted line). Thefit of the model is VAF=99.67%.



dof contains the degrees of fulfillment of the rules, yl are outputs of the indi-
vidual rules. yl mis equa to ymwith the exception that all outputs but the one
corresponding to the largest dof are masked by NaN. Thisfacilitates easy plotting
of the local models. In our static SISO example, the dof matrix represents the
membership functions evaluated for the input vector, see Fig. 2.

Original function (yellow) and local models
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Figure 2. The original function and the obtained local models (top),
membership functions (bottom).

Now you can investigatethe contents of the FMstructure. To display the consequent
parameters, for instance, type:

FM t h{ 1}

ans =
5.7961 0. 0259
-0. 0023 0. 8993
-5. 3350 2.3972
0.5580 -1.2872
6.1772 -5.5209
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In a similar way, the cluster centers and other parameters can be extracted. The
function f n2t ex writes the information from FMto a IATeXfile. A part of thisfile
isincluded below, in order to see the rules and the cluster centers:

Ifuis A, then y = 5.80-10% + 2.59 - 102
IfuisA,then y = —229-10%u +8.99-10~"
If uis Ag then y = —5.33 - 10% + 2.40 - 10°
IfuisA,then y=5.58-10"1u — 1.29-10°

If uis As then y =6.18 - 10% — 5.52 - 10°

G 0

,
=4
@
S

7.28 1072
2.40-107!
4.53-107"!
6.74 107!
8.89-107!

GO WNPE

Modeling a SISO Dynamic System

In this example, we develop a simple dynamic model for the relationship between
thethrottleangle and the speed of anengine. Let usfirst definethePar (parameters)
and Dy n (dynamics) structures:

Par.c = 3; % nunber of clusters
Par.m= 2. 2; % fuzzi ness paraneter

Par.tol = 0.01; %termnation criterion
Par.ante = 1; % pr oduct - space Ms

Dyn.Ny = 1; % nurmber of | agged outputs
Dyn.Nu = 1; % nunber of | agged inputs
Dyn.Nd = 1; % nunber of transport del ays

Par . ¢ defines the number of required clusters, Par . m and Par . t ol are the
fuzziness and the termination tolerance of the clustering algorithm, respectively.
The Par . ant e parameter specifies that product-space membership functionswill
be derived. Dyn. Ny and Dyn. Nu are the number of lags in the output and
input, respectively, and Dyn. Nd is the number of pure delays from the input
to the output. Thus, we will obtain a fuzzy model of the following structure:
y(k +1) = f(y(k),u(k)). Now we load the data set, split it in halves and use the
first half for identification and the second half for validation.
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| oad data

N = si ze(engi ne_speed, 1) ;

N2 = floor(size(engi ne_speed, 1)/2);
Dat.U = throttle(1: N2);

Dat.Y = engi ne_speed(1l: N2);

Dat.Ts = 0.1;

ue = throttl e(N2+1: N);

ye engi ne_speed(N2+1: N) ;

Dat . Ts is the sample time of the data. Now, the model can be constructed and
validated by simulation:

FM = f ntl ust (Dat, Par, Dyn);
[ym VAF] = fnmsimue, ye, FM; VAF

The graphical output obtained from the f nsi mfunction is shown in Fig. 3. Run
endenol to see this demo.

4500

4000

3500

3000

Outputl

2500

2000

1500

1000 | | | | |
0 100 200 300 400 500 600

Time [s]

Figure 3. Dynamic simulation of the engine (VAF=99.63%).
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Modeling a MIMO Dynamic System

Consider a MIMO process consisting of four cascaded tanks as shown in Fig. 4.
Theinputs arethetwo flow rates u = [Q:, Q»]", and the outputs are the four levels
Yy= [hl7 h27 h3a h4]T'

Q Q
b 0

h, h,
3 4
' —

h,

h,
1 2

Figure 4. Four cascaded tanks.

A model of this system was simulated in Simulink in order to obtain input—output
data sequences for identification. The input signal is a low-pass filtered normally
distributed white noise to which white noise with a small amplitude is added, see
Fig. 5. The low-frequency component signal drives the nonlinear system through
the entire operating range, while the high-frequency component takes care for
persistent local excitation.

The measured outputs are the levels in the four tanks. They are similar to signas

givenin Fig. 6. The number of samples available for identification is 1000 and the
sample timeis 10 s. The structure of the MIMO mode is selected by using the

10
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Figure5. Input data for identification.
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insight in the physical structure of the system as follows:

101 1 00 0 0
01 1 1 00 0 0

"0 0 01 o™ T 1 ool"™T 1 0 @
00 0 1 0 1 0 1

The first row of the n,, matrix states that level h,(k + 1) depends on hy (k), hs(k)
and hy(k), but not on hs(k), seeFig. 4. Similarly, thethird row of this matrix states
that h3(k + 1) depends on hs(k), but not on the other variables. The meaning of n,
and ny should be clear.

To construct the fuzzy model, the identification data set is first loaded and the
structural parameters of the model are defined:

| oad Il 4dat a % | oad i nput -out put data
Dat.U = u; % i nput
Dat.Y =vy; % out put
Dat.Ts = 10; % sanple tine
Par.c = [3 3 3 3]; % nunber of clusters
Par. m= 2.2; % fuzzi ness paraneter
Par.ante = 1; % pr oduct - space MFS
Dyn.Ny = [1 0 1 1; % out put | ags
0111,
0010;
000 1];
Dyn.Nu = [0 O; % i nput | ags
0 O;
1 O;
0 1];
Dyn.Nd = [0 O; % transport del ays
0 O;
1 O;
0 1];

Now the fuzzy model can be constructed and validated on a different data set (ue,
ye):

FM = fntl ust (Dat, Par, Dyn) ;

[ym VAF] = fmsin(ue,ye, FM;

The vaidation data set was obtained by interchanging the two input signals. A
comparison of the outputs of the fuzzy model with the process data is shown in
Fig. 6.

12
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Figure 6. Comparison of the process output (solid line) with the fuzzy
model output (dashed-dotted line).
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For acomparison, a4th-order linear state-space model was identified from the same
data set by means of a subspace identification technique (Verhaegen and Dewilde,
1992). For the TS fuzzy model: VAF =1[99.41, 99.46, 99.47, 99.81], and for the
linear state-space model: VAF = [95.37, 85.11, 96.88, 89.64]. It isclear that the
fuzzy model is considerably more accurate than the linear one.
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Reference

Construction and simulation of fuzzy models

f el ust build aMIMO NARX fuzzy model by
product-space fuzzy clustering
frmsi m simulateaMIMO NARX fuzzy model

Utilities

fnstruct description of the fuzzy model structure FM
f m2t ex export afuzzy model into aLaTEX file

pl ot nfs plot membership functions of afuzzy model
rns root mean squared error

vaf variance accounted for

Demonstrations

endenpl SISO model of throttle—speed relation

endenp2  MISO model of throttle—pressure relation
endemp3  SIMO modé of throttle—(speed,pressure) relation
fm deno list of all toolbox demos

Il denrpl SISO model of aliquid level process

Il 4denrol MIMO model of aprocess with four cascaded tanks
statdenmp static SISO function (sine)

wwdeno SIMO model of waste-water treatment process

Fuzzy Modeling and Identification Toolbox
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Purpose
Build a MIMO input—output static or dynamic fuzzy model from data
by means of product-space fuzzy clustering (uses the Gustaf son-K essel
algorithm).

Synopsis
[FM M, Z] = fncl ust (Dat, Par, Dyn)

Description
The f ntl ust function constructs a multivariable TS fuzzy model
from input-output data. The data sequences and other data-related
informationisgivenintheDat structurewhich hasthefollowingfields:

Dat . U matrix containing input data
Dat.Y matrix containing output data
Dat. Ts  sampletime (optional, default 1)
Dat . N number of data points per batch

The data sequences are stored in the columns of Dat . Uand Dat . Y.
In the sequel, the number of model inputs (columns of Dat . U) is de-
noted by ni and the number of model outputs (columns of Dat . Y) by
no. Dat. Ts isthe sample period of the data. It is only stored in the
model structure FMand then used in simulation (f nsi ) to get theright
time scale. This parameter is optional (default Ts = 1). With Dat . N,
one can specify that the input-output data consists of several separate
batches concatenated in the U and Y matrices. Dat . Nis a vector con-
taining as many elements as there are batches. Each element then gives
the number of data samples in the corresponding batch. For instance,
N=[ 100 250 200] meansthat the Uand Y matrices consist of three
batches, the first one of 100 samples, the second one of 250 samples,
and the third one of 200 samples.

User-supplied parametersrelated to clustering and model extraction are
are givenin the Par structure which has the following fields:

Par . c number of clusters (thus also rules) per output
Par. m the fuzziness exponent per output (default 2)
Par . t ol termination tolerance (default 0.01)



Par . seed seed for random generator (default sum(100* clock))
Par . ante type of the antecedent (default 1)

The number of required clustersisascalar for MISO systemsand avec-
tor for MIMO systems (each MISO model may have a different number
of clusters). All theremaining fields of Par areoptional. Par . misthe
fuzziness exponent (Par . m> 1) with the default value Par . m= 2.
Larger valuesimply fuzzier (more overlapping) clusters. For MI1SO sys-
tems, it isascalar, for MIMO systems a vector, i.e., each MISO model
may have a different degree of fuzziness in clustering. The termina-
tion tolerance for the clustering algorithm can be given in Par . t ol
(default Par . t ol = 0.01). In fuzzy clustering, a random initial par-
tition is usually generated. In order to obtain reproducible results, the
random generator may be seeded by supplying the Par . seed para
meter. Itsdefault valueissun{ 100* cl ock) ) . Par . ant e specifies
the type of the antecedent in the fuzzy model. Currently, two options
are implemented, 1 for product-space membership functions (default),
and 2 for projected membership functions. Product-space membership
functions givefaster but often less accurate models. For M1SO systems,
Par . FM ypeisascalar, for MIMO systemsitisal x no vector (each
MISO model can be of a different type).

The Dy n structure definesthe dynamics of theinput—output model. This
structure is optional (if not supplied, astatic MIMO model y = f(u) is
constructed) and has the following fields:

Dyn. Ny  number of delaysiny (default O)
Dyn. Nu  number of delaysin u (default 1)
Dyn. Nd  number of transport delays (default 0)

Dyn. Ny is the number of delaysiny (analogical to the order of the
denominator polynomial of a linear transfer function). The default
valueis Dyn. Ny=zer os( no, no), i.e.,, a static system. For MISO
systems, Dyn. Ny is a scalar (there is one output only), for MIMO
systemsit isan no x no matrix. Each row corresponds to one MISO
model and specifies which delays of which outputs are included in that
model. Dyn. Nu defines the delays in u (analogical to the order of
the numerator polynomial of a linear transfer function). The default
value is Dyn. Nu=ones(no, ni) (static system). For MISO sys-
tems, Dyn. Nu isal x ni vector, for MIMO systems it isan no x
ni matrix. Each row corresponds to one MISO model and specifies
which delays of which inputs are included in that model. Dyn. Nd

Fuzzy Modeling and Identification Toolbox 17

18

defines the number of pure transport delays in u. The default value is
Dyn. Nd=zer os( no, ni) (static system, thus no delay). For MISO
systems, Dyn. Nd isal x ni vector, for MIMO systemsit is an no
x ni matrix. Each row corresponds to one MISO model and specifies
which the transport delaysin al the inputs of that model. To obtain a
causal model y(k + 1) = f(y(k), ...,u(k), ...), Dyn. Nd must be set to
one.

Theoutput of f ntl ust isthe FMstructurewhich containsall the para-
meters of the obtained fuzzy model. Seef nst ruct for details. The
fuzzy partition matrices are returned in the Mu cell array, where each
cell corresponds to one output. Similarly, Z is a cell array containing
the data matrix that has been clustered. To visualize the partition, the
cells of Mu can be plotted against the columns of the cellsin Z.

Algorithm

f ncl ust usesfuzzy clustering in the product space of the regressors
and the regressand in order to approximate a nonlinear system by a
collection of local linear models. Each local model then corresponds to
onefuzzy rule of the Takagi-Sugeno type. MIMO systemsareidentified
(and simulated) as a set of coupled M1SO systems. See (Babuska, 1998)
for details.

Example
Approximate asinusoidal function by aTS fuzzy model with fiverules:
Dat.U = (0:0.02:1)";
Dat.Y = sin(7*u);
Par.c = 5;

[FM W] = fnclust(Dat, Par);
[ym VAF] = fnsin(u,y, FM; VAF

See Also

fmsim fnstruct, fnRtex



fmsam

Purpose

Simulate aMIMO input—output fuzzy model.

Synopsis

[Ymq, DOF, Yl,YIni = FMBIM U, Y, FM
Ymi n, Ymax, show, H)

Description

The f msi mfunction simulates a fuzzy model FMfrom the input data
U and compares the simulated output Ymwith the true output Y. The
first several values of Y are used to initialize Ym The number of these
values depends on the number of lags defined in Dyn. TheY parameter
is optional, if an empty matrix is supplied, zero initial conditions are
used. Theformat of datain Uand Y isthesameasinf ntl ust. Ymi n
and Yrmex are the lower and upper bounds on Y. During the simulation,
the outputs are constrained between these bounds. This parameter is
optional, default bounds are Yni n=- i nf and Ynmax=i nf . Theshow
parameter determineswhat graphical output isshown on the screen. Set
this parameter to 1 for on-line plot during the simulation, to 2 for aplot
at the end of simulation, and to O for no plot at al (optional, default
1). The H parameter (optional) specifies the prediction horizon. In this
version, it only can be set to 1, which means one-step-ahead prediction.
If not supplied, simulation from input is used.

The output argument q is a performance index of the model, com-
puted as variance accounted for (VAF). Seevaf for details. DOF isa
matrix containing the degrees of fulfillment of the rules. For multiple-
output systems, the individual models are concatenated in one matrix:
[DOF1, DOF2, ..., DOF.no]. The contributions of the con-
sequents of the individual rules are returned in the matrix Yl . Yl mis
identical to Yl except for that all outputs but the one corresponding to
the largest DOF are masked by NaN. Thisformat is suitablefor plotting
the local models. The same holds for MIMO systems as with DOF.

Note: f msi mcurrently only works properly for static dynamic systems
with inputs, some minor adjustments are needed for autoregressive sys-
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tems. The possibility to include aprediction horizon and a"single-step”
mode will be added as well.

See Also

frmstruct, fnclust, vaf



fmstruct

Purpose

Help on the structure of FM

Synopsis

frstruct or hel p frstruct

Description

The parameters of a fuzzy model are stored in a MATLAB 5 structure
named FM(fuzzy model) which has the following fields:

Ts
ni
no

N

t ol
seed
dat e
ny
nu
nd
ante

Ali st
dist

rls

nfs

th

s

\Y

P

zmn
zmax

| nput Nane
Qut put Nanme

sampletime

number of inputs

number of outputs

number of data samples used for identification
termination tolerance for clustering

seed for random initialization of fuzzy partition
date of model construction

number of output lags

number of input lags

number of pure delays

type of fuzzy model

fuzziness exponent

list of indices of used antecedent variables
list of indices of used consequent variables
rule matrix

membership function matrix

consequent parameters

standard deviation for t h

cluster centers

norm-inducing matrices

minima of each column of the data matrix Z
maxima of each column of the data matrix Z
names of input variables (cell array)

names of output variables (cell array)

Each element of the FM array corresponds to one output of the model.

See Also

fnclust, fnmsim fnRtex
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Purpose
Export afuzzy model into aLaTEX file.

Synopsis
fn2tex(FM fil enane)

Description

This utility function writes some of the information contained in FM
into aLaTEX file. The created file contains an introductory description
of the model and its structure. For each output, the rule base, the
consequent parameters and the cluster centers are included. FMis the
fuzzy model parameter matrix and f i | enanme specifies the name of
the LaTEX file to be created. If afile with the specified name already
exigts, it is overwritten without awarning.

See Also
frmstruct, plotnfs



plotmfs rms

Purpose Purpose _
Plot membership functions. Root-mean-squared error between two signals.
: Synopsis
Synopsis yrmg( T2
pl ot nf s(FM opt) yl.y
Description Description |
This utility plots the membership functions contained in FM on the E;Ir;d!l?r?earl\!/sl Sc?r%‘;iti&:;??err\os;??sn-squar fﬁeef Lc;:i?et(\)l:‘l?rr; to\/(\/j; s é?]
T e P oy, Produc com. aring the true output with the output of the rqnodely i
space membership functions, however, cannot be visualized in general. paring P P :
An approximate idea about their shape is obtained by plotting their See Also
projections. ot
See Also

fnstruct, fnRtex
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vaf

Purpose
Percentile variance accounted for (VAF) between two signals.

Synopsis
vaf (y1,y2)

Description
Function vaf computes the percentile variance accounted for (VAF)
between two signas as follows:

VAF = 100%- |1 — VA1 =¥2)
var(y1)

The VAF of two equal signals is 100%. If the signals differ, VAF
islower. When y1l and y2 are matrices, VAF is calculated for each
column. The VAF index is often used to assess the quality of a model,
by comparing the true output with the output of the model.

See Also
rms
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